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Abstract. In many applications of the Cox model the proportional hazards as-
sumption is not plausible. In these cases, the solution to non-proportional hazards
usually consists of modeling the effect of the variable of interest as well as the inter-
action effect of this variable with some function of time. Although Stata provides
a handy command to implement this interaction in stcox, it does not allow the
typical visualizations using stcurve if stcox was estimated with the tvc() option.
In this article, I provide a short workaround which enables to estimate the survival
function after stcox with time-dependent coefficients. I introduce and describe a
new program scurve tvc which automates this procedure and which allows users
to easily visualize survival functions for models with time-varying effects.
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1 Overview

In many disciplines, the time-varying effects of variables in duration analyses are of
substantive interest (Box-Steffensmeier et al. 2003; Giolo et al. 2012; Nilsson and Nivre
2013). Assume that a cancer treatment x had short-term benefits, but long-term treat-
ment would cause side-effects which eventually deteriorate a patients health situation.
In this scenario, we would like to know if the long-term side-effects outweigh the short-
term benefits. This would be the case if after a certain time, fewer people which re-
ceived the treatment had survived compared to patients who did not receive treatment
x. The comparison of these groups could be achieved with the respective survivor func-
tions for each group (Putter et al. 2005). Calculating these estimates requires a short
workaround, since Stata does not provide a build-in solution to plot the survival function
with time-varying coefficients. I provide a solution below.

In the case that all covariates have constant effects, it is straightforward to calculate
the survivor function for different scenarios, based on the estimated coefficients as well
as the baseline survival functions (Kalbfleisch and Prentice 2002; Cleves et al. 2010).
Let h0(t) be the baseline hazard function. In the Cox model, the hazard function for
an individual i with covariates x is then asserted to be

h(t|xi) = h0(t)exp(xiβ) (1)
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2 Survival functions after stcox with tvc()

From this we can calculate the cumulative hazard function:

H(t|xi) =

∫ t

0

h(u|xi) du = exp(xiβ)

∫ t

0

h0(u) du = exp(xiβ)H0(t) (2)

Since the survivor function can be calculated from the cumulative hazard function,
we get:

S(t|xi) = exp(−exp(xiβ)H0(t)) = S0(t)
exp(xiβ) (3)

In the case of time-varying effects, this calculation becomes more complicated. To
allow for a changing effect, an interaction of the variable with some function of time
can be included as a time-varying covariate. If the function f(t) by which the effect
varies with time is known, the effect can easily be modeled. Consider a variable z with
such a time-varying effect. If we enter the interaction of z with time as a time-varying
covariate, the hazard can be written as

h(t|zi) = h0(t)exp(ziγ + zif(t)δ) = h0(t)exp(zi[γ + f(t)δ]) = h0(t)exp(ziβt) (4)

While this easily accounts for the time-varying effect, the calculation of the survival
function becomes more complicated. Once the predictor variables in the model are
interacted with time, the linear combination of predictors ziβt depends on time and
remains in the integral in (2).

Below, I provide an example how to estimate these survivor functions in Stata.
Thereafter, I describe the new program scurve tvc which automates this procedure.

2 Estimating survival functions with tvc()

Consider a case with a binary treatment variable x and a binary confounder called
control, whereby the effect of x changes over time. The following code generates duration
data for this setting, whereby the observations are censored after 30 observations (cf.
Crowther and Lambert 2012). The data come from the following exponential duration
model:

h(t|xi) = exp(ln(0.05)− 0.9xi + 0.6ln(t)xi + 1.5controli)

. clear

. set seed 94215841

. set obs 1000
number of observations (_N) was 0, now 1,000

.

. gen x=(runiform()>.5)
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. gen control=(runiform()>.5)

.

. survsim ftime, cov(x -.9 control 1.5) tde(x .6) distribution(exponential) ///
> lambda(.05)

. gen failure=(ftime<=30)

. replace ftime=30 if ftime>30
(65 real changes made)

.

. stset ftime, failure(failure)

failure event: failure != 0 & failure < .
obs. time interval: (0, ftime]
exit on or before: failure

1000 total observations
0 exclusions

1000 observations remaining, representing
935 failures in single-record/single-failure data

9693.849 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 30

To model the time-dependent effect, users of Stata could draw on stcox and the
tvc() option. Unfortunately, however, Stata is unable to estimate survival functions in
the presence of time-dependent effects.

. stcox x control, tvc(x) texp(ln(_t)) nohr nolog

failure _d: failure
analysis time _t: ftime

Cox regression -- no ties

No. of subjects = 1,000 Number of obs = 1,000
No. of failures = 935
Time at risk = 9693.849402

LR chi2(3) = 468.86
Log likelihood = -5468.3546 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

main
x -.931918 .132382 -7.04 0.000 -1.191382 -.672454

control 1.464325 .0768318 19.06 0.000 1.313737 1.614912

tvc
x .6156235 .065858 9.35 0.000 .4865441 .7447028

Note: Variables in tvc equation interacted with ln(_t).

.

. capture noisily stcurve, survival at(x=1) at(x=0)
this post-estimation command is not allowed after estimation with tvc();
see tvc note for an alternative to the tvc() option



4 Survival functions after stcox with tvc()

In a randomized clinical trial, the results for both groups are easily compared using
e.g. the Kaplan-Meier survival estimates. However, if our data stems from observational
studies and requires us to adjust for a larger number of covariates, this comparison is
no longer useful. Moreover, we might want to predict the survival function for different
subgroups to assess the relative success of an intervention in different contexts (cf.
Putter et al. 2005). In this case, a manual workaround can help us to get the intuition
how the two groups evolve over time as well as how the effect differs across subgroups
in our sample. Below, I outline this workaround using the example data.

First, we need to estimate the time varying coefficient manually:

. gen id=_n

. stset ftime, id(id) failure(failure)

id: id
failure event: failure != 0 & failure < .

obs. time interval: (ftime[_n-1], ftime]
exit on or before: failure

1000 total observations
0 exclusions

1000 observations remaining, representing
1000 subjects
935 failures in single-failure-per-subject data

9693.849 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 30

.

. stsplit, at(failures)
(935 failure times)
(497,420 observations (episodes) created)

.

. generate x_t = x*ln(_t)

.

. stcox x x_t control, nolog nohr

failure _d: failure
analysis time _t: ftime

id: id

Cox regression -- no ties

No. of subjects = 1,000 Number of obs = 498,420
No. of failures = 935
Time at risk = 9693.849402

LR chi2(3) = 468.86
Log likelihood = -5468.3546 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

x -.931918 .132382 -7.04 0.000 -1.191382 -.672454
x_t .6156235 .065858 9.35 0.000 .4865441 .7447028

control 1.464325 .0768318 19.06 0.000 1.313737 1.614912
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We could now use the stcurve command, but setting x t to some value would ignore
the fact that this variable is not constant, but rather varies with time. Hence, we need
to proceed with the manual workaround and grab the stored coefficient estimates:

. matrix b=e(b)

We now use sts generate (or alternatively predict with the option basehc) to
store the estimated hazard component, ∆H(tj) = H(tj) −H(tj−1), adjusting all vari-
ables to zero. Smoothing the variable baseline would generate an estimate of the baseline
hazard function. The cumulative function of the variable will give us an estimate of the
baseline cumulative hazard function.

. sts generate baseline=h, adjust(x x_t control)

Here, however, we are interested in a comparisson of the survival function for four
different scenarios: x=1 and control=0, x=0 and control=0, x=1 and control=1, x=0 and
control=1. Since the effect of x varies with time, we cannot simply calculate the function
from the baseline cumulative hazard or survival function. We therefore calculate the
scenario-specific hazard contribution based on Kalbfleisch and Prentice (2002, 114ff.).

∆H(tj |xi) = [1− (1−∆H(tj))]
exp(xiβ) (5)

By summing up these values, we approximate the cumulative hazard function for
each scenario. From this, we can calculate the estimated survival function.

S(tj |xi) = exp[−
∑

∆H(tj |xi)] (6)

The workaround implements these steps as follows:

.

. preserve

.

. sort _t

. collapse (mean) baseline, by(_t)

.

.

. *scenario 1: x=1 and control=0

. gen b_x_nocontrol = 1-(1-baseline)^exp(b[1,1]+b[1,2]*ln(_t))
(1 missing value generated)

. gen H_x_nocontrol = sum(b_x_nocontrol)

. gen S_x_nocontrol = exp(-H_x_nocontrol)

.

.

. *scenario 2: x=0 and control=0

. gen b_nox_nocontrol = baseline
(1 missing value generated)

. gen H_nox_nocontrol = sum(b_nox_nocontrol)

. gen S_nox_nocontrol = exp(-H_nox_nocontrol)
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.

.

. *scenario 3: x=1 and control=1

. gen b_x_control = 1-(1-baseline)^exp(b[1,1]+b[1,2]*ln(_t)+b[1,3])
(1 missing value generated)

. gen H_x_control = sum(b_x_control)

. gen S_x_control = exp(-H_x_control)

.

.

. *scenario 4: x=0 and control=1

. gen b_nox_control = 1-(1-baseline)^exp(b[1,3])
(1 missing value generated)

. gen H_nox_control = sum(b_nox_control)

. gen S_nox_control = exp(-H_nox_control)

.

.

. keep S_x_nocontrol S_nox_nocontrol S_x_control S_nox_control _t

. rename _t _tx

. save my_surv_curve, replace
(note: file my_surv_curve.dta not found)
file my_surv_curve.dta saved

.

. restore

.

. merge using my_surv_curve
(note: you are using old merge syntax; see [D] merge for new syntax)

.

This data can now be merged with the original data and plotted using simple line
plots. Figure 1 compares the workaround estimates against Kaplan-Meier estimates for
each scenario. The individual graphs were combined with the user-written program
grc1leg. The graph demonstrates that the estimated survival functions are in reason-
able agreement with the non-parametric Kaplan-Meier estimates for each scenario.

. sts graph if control==0, by(x) plot1opt(lpat(dash)) plot2opt(lpat(solid)) ///
> scheme(sj) saving(km1, replace) ylab(0(.2)1, format(%9.1g)) title("") ///
> subtitle("Control=0")

failure _d: failure
analysis time _t: ftime

id: id
(note: file km1.gph not found)
(file km1.gph saved)

. sts graph if control==1, by(x) plot1opt(lpat(dash)) plot2opt(lpat(solid)) ///
> scheme(sj) legend(off) saving(km2, replace) ylab(0(.2)1, format(%9.1g)) ///
> title("") t1title("Control=1")

failure _d: failure
analysis time _t: ftime

id: id
(note: file km2.gph not found)
(file km2.gph saved)

. line S_nox_nocontrol S_x_nocontrol _tx, c(J J) sort lp(dash solid) ///
> scheme(sj) legend(off) saving(w1, replace) ylab(0(.2)1) ///
> t1title("Control=0") xtitle("analysis time")
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(note: file w1.gph not found)
(file w1.gph saved)

. line S_nox_control S_x_control _tx, c(J J) sort lp(dash solid) ///
> scheme(sj) legend(off) saving(w2, replace) ylab(0(.2)1) ///
> t1title("Control=1") xtitle("analysis time")
(note: file w2.gph not found)
(file w2.gph saved)

. grc1leg km1.gph km2.gph, leg(km1.gph) scheme(sj) ycommon ///
> saving(km, replace) subtitle("Kaplan-Meier estimates")
(note: file km.gph not found)
(file km.gph saved)

. grc1leg w1.gph w2.gph, scheme(sj) ycommon saving(w, replace) ///
> subtitle("Cox estimates")
(note: file w.gph not found)
(file w.gph saved)

. grc1leg km.gph w.gph, scheme(sj) ycommon leg(km.gph) col(1)
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Figure 1: Comparing Kaplan-Meier survival estimates against estimated survivor func-
tion using the workaround.

3 The program scurve tvc

The procedure is automated in the ado-file scurve tvc. The program estimates a
Cox model with time-varying coefficients from which it estimates, saves and plots the
estimated survival function for as user-specified scenario. I describe the syntax, options
and an illustrative example below.
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3.1 Syntax

scurve tvc
[

if
] [

in
]

, generate(newvarname)

at(varname #
[

varname # ...
]

) tvc(varlist) texp(string)
[

replace

ties(string) shared(varname) strata(varname) graph plotopts(string)
]

3.2 Description

scurve tvc fits stcox with time-varying effects and calculates the survival curve for
specific covariate values.

generate(newvarname) creates the variable newvarnameto store the estimated survival
curve. If strata() is specified, scurve tvc creates one variable for each stratum.
The corresponding analysis time variable, which allows to plot the results, is saved
in a new variable called tscurve.

at(varname #
[

varname # ...
]

) specifies the covariates included in the model and
the values for which the survival curve should be calculated.

tvc(varlist) specifies the covariates with time-varying coefficients. The variables in
tvc() must also appear in at(). scurve tvc will automatically stsplit the data
at failure times to ensure a correctly estimated model. See help tvc note for more
information.

texp(string) specifies the function of analysis time according to which the effect varies
with time. For example, specifying texp(ln( t)) would cause the variables with
time-varying coefficients to be multiplied by the logarithm of analysis time.

3.3 Options

replace existing variable(s) with the new estimates.

ties(string) specifies the option how stcox handles tied failure times. See help stcox

for details.

shared(varname) specifies a shared-frailty ID variable. See help stcox for details.

strata(varname) specifies a strata ID variables. See help stcox for details.

graph plots the predicted survival curve. If strata() is specified, the survival estimates
for each stratum will be plotted.

plotopts(string) enables to customize the plot using options allowed with twoway

line.
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3.4 Example

Similar to the example above, consider a case with a binary treatment variable x, a
binary confounder called control1 and a continuous confounder called control2, whereby
the effect of x changes over time. The following code generates duration data for this set-
ting, whereby the observations are censored after 30 observations (cf. Crowther and Lambert
2012). The data come from the following Weibull duration model:

h(t|xi) = 1.3t1.3−1exp(ln(0.05)− 0.9xi + 0.6ln(t)xi − 1.3control1i − 0.4control2i)

. clear

. set seed 581265456

. set obs 1000
number of observations (_N) was 0, now 1,000

.

. gen x=(runiform()>.5)

. gen control1=(runiform()>.5)

. gen control2=rnormal()

.

. survsim ftime, cov(x -.9 control1 -1.3 control2 -.4) tde(x .6) ///
> distribution(weibull) lambda(.05) gamma(1.3)

. gen failure=(ftime<=30)

. replace ftime=30 if ftime>30
(109 real changes made)

.

. gen id=_n

.

. stset ftime, id(id) failure(failure)

id: id
failure event: failure != 0 & failure < .

obs. time interval: (ftime[_n-1], ftime]
exit on or before: failure

1000 total observations
0 exclusions

1000 observations remaining, representing
1000 subjects
891 failures in single-failure-per-subject data

13122.843 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 30

Assume that x is a cancer treatment from which we know that it causes severe
long-term side-effects. Hence, we would want to know under which circumstances the
treatment is beneficial and whether the survival functions cross at a certain point in
time. In this case, we can use scurve tvc to estimate a Cox model in which the effect
of x varies with time and predict the estimated survival function for a specific scenario,
here x=1, control1=0 and control2=0:
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. scurve_tvc, gen(S_x) at(x 1 control1 0 control2 0) tvc(x) texp(ln(_t)) replace
(note: variable S_x not found)

Dataset has been temporarily split at failure times
(891 failure times)
(493,614 observations (episodes) created)

The estimation is based on the following Cox Proportional Hazards Model:

failure _d: failure
analysis time _t: ftime

id: id

Iteration 0: log likelihood = -5506.5059
Iteration 1: log likelihood = -5299.4786
Iteration 2: log likelihood = -5298.9218
Iteration 3: log likelihood = -5298.9218
Refining estimates:
Iteration 0: log likelihood = -5298.9218

Cox regression -- no ties

No. of subjects = 1,000 Number of obs = 494,614
No. of failures = 891
Time at risk = 13122.84325

LR chi2(4) = 415.17
Log likelihood = -5298.9218 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

x -.9929653 .1971679 -5.04 0.000 -1.379407 -.6065234
control1 -1.230347 .0740657 -16.61 0.000 -1.375513 -1.085181
control2 -.3876476 .0352886 -10.99 0.000 -.456812 -.3184833

_x_t .63722 .0861443 7.40 0.000 .4683803 .8060597

Note: tvc-interactions denoted by _varname_t were interacted with ln(_t).

Note that scurve tvc automatically executes all steps of the workaround presented
above. It splits the data at failure times, generates interaction variables based on the
function which you specified and shows you the model output. It restores the estimated
survival function in a new variable called S x.

We repeat the same process, but this time for the scenario with x=0. We then plot
this variable against the corresponding analysis time stored in the new variable tscurve.
Figure 2 shows that for the specified scenarios, the survival curves cross after about 9
time units. Hence, the negative side-effects of treatment x outweigh its benefits after
this time.

. quietly scurve_tvc, gen(S_nox) at(x 0 control1 0 control2 0) tvc(x) ///
> texp(ln(_t)) replace

.

. label var S_x "x=1"

. label var S_nox "x=0"

.

.

. twoway line S_x S_nox _tscurve, c(J J) scheme(sj) title("") ///
> xtitle("Analysis time") ytitle("Probability of survival") ylab(0(.2)1)

If the user is interested in a single scenario only, using the option graph as well
as plotopts() will automatically produces a graph for the scenario specified in at().
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Figure 2: Predicted survival probabilities with and without treatment x. Remaining
covariates held at zero.

Often, however, we are interested in a comparison of different scenarios, similar to
Putter et al. (2005). Hence, we can use scurve tvc to estimate the survival functions
for x=0 and x=1 at various values of the remaining covariates. In the hypothetical cancer
treatment example, this might imply calculating the estimated survival probabilities for
specific patient characteristics with different risk-levels. We can then plot the estimated
survival functions for each scenario to transparently communicate the estimated survival
probabilities and highlight potential trade-offs for treatments with time-varying effects.

Figure 3 provides these estimates for four scenarios. The substantive interpretation
for our hypothetical cancer treatment implies that the treatment x is ineffective and even
harmful for low and moderate risk patients. However, high risk patients profit from the
procedure. The graphical representation therefore helps to communicate the complex
results from the model with non-proportional hazards very clearly and intuitively.

To highlight that the procedure accurately captures the data generating process,
Figure 3 shows the analytically calculated, true survival functions and compares these
to the estimates from scurve tvc. The plot indicates that the results are in close
agreement with underlying data generating process.

4 Conclusion

This paper demonstrates how to estimate survival functions from Cox models with
time-varying coefficients. The code is automated in the program scurve tvc. The pro-
cedure allows to visualize the predictions of models with non-proportional hazards and
enables to effectively communicate model predictions for different covariate scenarios to
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Figure 3: Comparing true, analytically calculated survivor functions (left) for the sim-
ulated data with empirical estimates calculated with scurve tvc (right).
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a broader audience.
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